The news is by your side.

[The History of Electricity] Who First Discovered Electricity?

9,242 – Who First Discovered Electricity? Like thermodynamics, the history of electrical physics has its roots in pre-industrial questions that converged in the nineteenth century. These questions became a research paradigm, driven by a whole crew of researchers And they led to a power system that reshaped the world.

The study of electricity goes all the way back to antiquity. Like, for a long time, people knew that lightning is the powerful release of energy caused when two clouds are in love and make a baby cloud. But that’s hard to study.

But for centuries, natural historians didn’t really have any good ideas about how to more deeply understand this phenomenon. For one, they had no concept of current, or electricity as a flow of electrical charge. Current can happen either by the movement of negatively charged subatomic particles called electrons through wires or by the movement of charged molecules called ions.

And these people didn’t know either of those things existed. Secondly, the relationship between electricity and magnetism, which are intimately linked, was a mystery. And, third, a lot of experimentation into this phenomenon basically amounted to weird parlor tricks that had no obvious uses. So lets see who first discovered electricity?

Who First Discovered Electricity?

The History of Electricity. English natural philosopher Francis Hauksbee, for example, found out in the early 1700s that spinning a glass globe produced electricity—thus creating one of the first electrical generators. Then, in 1729, two amateur scholars named Stephen Gray and Granville Wheler discovered that electricity could be communicated over long distances by contact.

This was an important first step toward researching currents. But mostly it was an excuse to conduct totally ethical scientific demonstrations like suspending a young boy from the ceiling, charging him up, and then watching him attract objects with different body parts.

Benjamin Franklin, Inventor of Electricity

And we can’t forget statesman, encyclopedist, and infamous know-it-all Benjamin Franklin. He witnessed one of these flying-boy demonstrations in Boston, then went home to Philadelphia and waited for a thunderstorm. As the story goes, in 1752, he flew his kite in a storm and succeeded in “drawing off” electrical fire. Inspired by this incident, he developed the lightning rod.

How Benjamin Franklin discovered Electricity?

How he discovered static electricity? Ben has a strange obsession with rubbing glass and hard rubber with silk and fur.

Benjamin Franklin Electricity

Ben would rub a glass rod with silk and another rubber rod with the fur while hanging those rods from a string.

To more easily emulate this experiment today, we can use a plastic rod in wool instead of rubber and fur.

If he rubs two glass rods with silk and brought them close together or two rubber rods with fur and did the same, they would repel each other.

But if he rubbed a glass rod with silk and a rubber rod with fur, those two would attract. He didn’t realize what he was doing but he was actually removing electrons from the glass rod when he used silk and adding electrons to the rubber when he used fur.

Though he didn’t know what was going on exactly, he figured out that there was a positive charge and a negative charge. And like, or similar, charges repel each other, while opposite charges attract each other. He decided that the glass rod is rubbed with silk would be a positive charge while the rubber and fur would be a negative charge.

So, with that convention, by removing electrons the glass rod would become positively charged and by adding electrons, the rubber rod became negatively charged. As we recall, all atoms are made up of a nucleus, made up of protons and neutrons with electrons flying around them.

For Franklin’s experiments, the rubbing motion was physically removing the electrons from the atoms making up the glass rod or physically adding electrons to the rubber rod. Now, one view of electricity is that it is the flow of electrons but since the electrical charge on these objects doesn’t actually go anywhere, it is considered static electricity.

This is a bit of a misnomer as the electrons do move when the object comes in physical contact with something else at a different charge and everything equalizes. Usually in the form of a painful zap or a nocturnal light show.

So, now we know a bit more about positive and negative charges and how Benjamin Franklin discovered these differences.

Luigi Galvani Experiment

One of the first modern electrical physicists was Italian physician Luigi Galvani. In the late 1700s, his assistant accidentally caused a frog’s leg to twitch with a spark from a nearby electrostatic generator. Inspired by this chance observation, he conducted many freaky experiments with frogs.

After much frog-shocking, he theorized the existence of animal electricity or the electrical basis of nerve impulses. That inspired one young woman who was remarkably well informed about contemporary science:

in 1818, Mary Shelley published what would become a very famous book about a man zapped to life by a Galvani-Esque Doctor Frankenstein. Galvani also inspired his colleague, Italian physicist, and chemist Alessandro Volta, to push his work on nerves further.

How About Alessandro Volta Method?

And Volta became a rockstar of electrical physics when he created the first practical method of generating electricity—the first battery, known as the voltaic pile So ThoughtBubble, let’s make some sparks fly! Volta’s battery evolved from humble origins. The first iterations were made of two different metals separated by a brine-soaked cloth or piece of cardboard.

But Volta kept improving the pile. In 1800, he stacked pairs of copper and zinc discs, again separated by briny cloth or cardboard. When he connected the top and bottom of the pile, it generated a steady electric current that could be carried by a wire.

Volta had created the first stable source of electrical current! This type of two-metal battery fulfilled the
world’s scant electrical needs throughout much of the First Industrial Revolution, until around 1870. But no one could really explain how it worked, in part because no one had brought electricity and magnetism together.

Hans Christian Ørsted and Ørsted’s law

One of the first steps in this direction was taken in 1820 by Danish physicist and chemist Hans Christian Ørsted. While demonstrating to his students how to heat up wire by running an electrical current through it, Ørsted noticed that his compass’ needle kept jumping to a ninety-degree angle.

Hans Christian ØrstedSomehow, he realized, the electrical charge and the magnetic attraction of the compass were linked. Ørsted conducted further experiments and showed that electric currents actually produce neatly circular magnetic fields when they flow through wires.

This became known as Ørsted’s law. Later in 1820, at the Academy of Science in Paris, physicist André-Marie Ampère watched as a friend reproduced Ørsted’s electrically-messing-with-a-compass

Amazed, Ampère went to work figuring out the math behind this special relationship. He showed that two parallel, electrified wires attract each other if the currents flow in the same direction, and repel if the currents flow in opposite directions.

Ampère also showed that the force between the currents was inversely proportional to the distance between them and proportional to the intensity of the current flowing in each. This became known as Ampère’s law.

And he even theorized that there must be some “electrodynamic molecule” that carried the currents of electricity and magnetism. This became the basis for the electron. Ampère’s insights became the foundation
of the quantitative science of electromagnetism, or “electrodynamics.”

In 1827, Germany physicist Georg Ohm —who’d been conducting research using Volta’s battery—published his discovery that an electrical current between two points is directly proportional to the voltage, or potential difference, between them.

This became known as Ohm’s law. This can be expressed using the concept of resistance, or the difficulty of passing an electric current through that conductor, in a really simple equation: “I = V/R.”

Current, measured in amperes, is equal to voltage, measured in volts, divided by resistance, measured in ohms. All three scientists became standard units. They say, in Physics the greatest honor is when your name starts to be spelled with a lower case letter.

With practical batteries and basic scientific laws, the stage was set for electricity to become an industry—enter motors and lights. Born to a poor family in Newington Butts, London, Michael Faraday became obsessed with electricity and chemistry at a young age. Eventually, he became as important to the sciences of stuff as Darwin was to those of life.

In 1821—a year after Ørsted characterized electromagnetism and Ampère began experimenting with the math behind it—Faraday got to work inventing electromagnetic motors. His motors worked due to “electromagnetic rotation,” a motion made by the circular magnetic force around an electrified wire.

In 1831, he had his big breakthrough—electromagnetic induction, meaning the generation of electricity in one wire via the changing magnetic field created by the current in another wire. This became the basis of the electromagnetic technologies that we use today.

Michael Faraday Discovered Magneto-Electric Induction

In the same year, Faraday also discovered magneto-electric induction, which is the generation of a steady, direct electrical current in a wire by attaching it to a copper disc, and then rotating the disc between the poles of a magnet. This was the first modern electrical generator!

Michael faradayAnd he proved that the electricity created by magnetic induction, the electricity produced by a voltaic battery, and good ole static electricity were all the same phenomenon. Faraday’s experiments led to the invention of modern electrical motors, generators, and transformers.

He figured out how to make electricity do work on magnetism and vice versa. And his young buddy, Scottish physicist James Clerk Maxwell, played the Ampère to his Volta, figuring out the math involved in induction.

In 1855, Maxwell dropped “On Faraday’s lines of force,” showing Faraday’s discoveries about electricity and magnetism in the forms of differential equations.

Maxwell’s long paper, “On Physical Lines of Force,” introduced his full theory of electromagnetism in parts over 1861 and ‘62. Here, he theorized that electromagnetic waves travel at the speed of light, and that light must exist in the same medium as electrical and magnetic energy.

By connecting light, electricity, and magnetism, Maxwell laid the groundwork for modern physics. And his work was a major influence on Einstein. But the average person in the 1870s didn’t know who Faraday and Maxwell were, much less that they had revolutionized energy and work.

There was still no system for using electricity industrially. For that useful system, we have to hop across
the Atlantic to the first home of corporate research and development in science—Menlo Park, New Jersey.

Here, a mix of brilliant engineers, scarcely trained boys, and one pet bear (yes!) worked under the direction of a controversial inventor— who was or was decidedly not much of a scientist himself, depending on which historian you prefer.

Thomas Alva Edison and Electricity

His name was Thomas Edison. Edison, or the “Wizard of Menlo Park,” or the “Napoleon of Science,” started his career as a lowly telegraph operator at the age of sixteen. He worked his way up, improving the telegraph
systems until he could open his own contract-based-lab-slash-workshop in 1876.

Thomas Alva EdisonMostly, people remember Edison for his work on making practical incandescent light bulbs, but he should really be thought of as the person who first saw the potential for an entire electrical grid. This included the generation of power, its distribution to homes and businesses, and the invention of useful products that required electricity to work.

In the late 1870s, people didn’t understand or see the need for electricity. Customers had to be created. So what did Edison do? Befriended the richest guy in New York, who was also the richest guy in the world is J. P. Morgan.

With Morgan’s money, Edison had the resources to work out the longest-lasting filament, or slender, heated up-until-visibly-lighted bit, for his bulbs. This ended up being made of carbon, after thousands of experiments on different materials. But he also had the resources to show off his lights in Paris and London. And, most importantly, to electrify downtown Manhattan.

People stayed up longer. More work got done. The feedback loop of just pushing off bedtime by a few hours was enormous—and this was before anyone had devised a good mass-scale electrical motor or vehicle. It’s true that Edison didn’t invent the components of his electrical power system, only improved upon them, thanks to his team-based, finance-backed approach to science and technology.

And it’s true that he became embroiled in an intense public battle called the Current War, over the safety and efficiency of his direct current, or DC, versus his rival Westinghouse’s much more practical alternating current, or AC.

Edison promoted capital punishment in New York, using an electric chair powered by Westinghouse’s AC. But—beginning with incandescent light—Edison and other inventors used the discoveries of the early electrical physicists to utterly transform the world.

Leave A Reply

Your email address will not be published.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More